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Abstract

In today’s rapidly evolving digital landscape, the demand for real-time video and

voice communication applications has surged. However, the quality of audio on the

recipient’s end is often compromised by background noise. This abstract addresses

the critical issue of speech enhancement, which has become increasingly important

as the usage of speech data continues to rise. Speech enhancement finds applications

in various domains, including mobile phones, speech recognition systems, hearing

aids, teleconferencing, and Voice over Internet Protocol (VoIP). The challenge lies

in improving audio quality by effectively reducing noise.

Traditional speech enhancement systems rely on a range of signal-processing

techniques and algorithms. However, the emergence of deep neural networks (DNNs)

has revolutionized this field. Our report focuses on a novel approach that simpli-

fies the speech enhancement process by eliminating the need for preprocessing. We

propose an end-to-end deep learning architecture, featuring a fully-convolutional

denoising network, where raw audio waveforms are directly input into the network.

This streamlined approach is detailed in the report, along with the architecture’s

intricacies, training process, evaluation, and comparison with state-of-the-art.

We utilize human listeners to assess the quality of the denoised output sub-

jectively. This approach provides insight into the real-world effectiveness of our

method. In conclusion, our research represents a significant advancement in speech

enhancement. Our end-to-end deep learning approach, free from preprocessing con-

straints, offers a compelling solution to the persistent problem of audio quality

degradation in noisy environments. By outperforming existing methods in percep-

tual experiments, our work not only advances the state of the art but also sets a

new benchmark for high-quality voice communication.



Chapter 1

Introduction

Speech enhancement, often referred to as denoising, is a pivotal process that revolves

around the intricate task of eliminating unwanted noise—typically recognized as

background noise—from speech signals. Crucially, this must be accomplished while

preserving the clarity and authenticity of the underlying speech. In this study, our

primary focus is on mono signals, which constitute recordings and playback uti-

lizing a single audio channel, as opposed to stereo signals that utilize two audio

channels. This particular emphasis guides our exploration into the realm of Single

Channel Speech Enhancement, where the central challenge centers on the delicate

equilibrium between minimizing noise interference and safeguarding the integrity of

the speech signal.

The complexity of the Speech Enhancement endeavor is further heightened by

the consistently high sampling rate of all audio files involved, which stands firmly at

16 kHz. This heightened density of data samples introduces an additional layer of

intricacy to the problem. In typical human-to-human communication settings, our

perceptual mechanisms are astonishingly sensitive to the smallest errors, thereby

making precision and efficacy of paramount concern.

Within the pages of this report, we devised an innovative approach to speech en-

hancement—an end-to-end deep learning methodology. In particular, our pipeline

uses a fully convolutional neural network (FCN) to generate clean audio from a

given noisy audio. FCNs have already proved themselves in other vision tasks [17].

For training such a network, we rely on a second network - Feature Loss network,

that learns feature embeddings for audio signals. Using the differences between

these feature embeddings for generated output and clean audio, we guide our De-
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noising network to generate smooth, perceptually similar (to clean audio) denoised

audio. These perceptual losses, gleaned from well-established sources [9, 11, 4], fur-

nish a distinctive lens through which we evaluate the performance of our model. In

brief, this feature loss network, initially designed to classify audio, calculates losses

by comparing internal activations induced by the input signals within the network.

Throughout this report, we consistently refer to this distinctive loss function as

”Perceptual Feature Losses.” Our findings robustly affirm its superiority over pre-

vailing techniques, a fact substantiated through perceptual experiments involving

human listeners. These outcomes point towards a promising avenue for enhancing

speech quality and noise reduction.

The crux of our approach is anchored in the training of the Denoising network,

a process wherein it is exposed to noisy audio inputs and is subsequently trained

by evaluating the perceptual feature losses between its output and the correspond-

ing clean audio. This loss mechanism ensures that the denoising network, over

time, learns to generate representations that closely mirror the clean audio signals

at multiple stages of processing. By infusing the training process with reconstruc-

tion losses at diverse layers, we strategically encourage the Denoising network to

preserve both the minutiae of low-level details and the nuanced subtleties of high-

level information from the clean audio. This layered approach yields a discernible

enhancement in audio quality, heightening its intelligibility. Furthermore, by en-

dowing deeper layers with higher weights in the summation of losses from various

layers, we harness the learning capabilities of each layer to effectively amplify speech

clarity and comprehensibility.
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Chapter 2

Literature Survey

There have been many algorithms for speech enhancement methods. Broadly, all

these algorithms can be classified into the following 3 classes -

1. Filtering Techniques: Different types of filters are used that minimize some

loss function between the original and enhanced audios. One of the commonly

used filters is Weiner Filter [2]. It is a linear estimator and the loss function

here is the mean squared error between the original and enhanced speech.

2. Spectral Restoration: The objective here is to find the estimate of the

minimum mean square error of the speech spectrum from a noisy version.

There are many ways to find the estimator using the noise-free speech [27],

[14].

3. Speech-Model-Based : Our approach falls in this category. Some other

popular architectures are Wavenet [25], SEGAN [20]. Such approaches aim

to fully exploit the expressive power of deep networks and avoid going into

spectrogram domains.

Initially, the denoising systems used to rely on spectrogram-domain-based meth-

ods. It was followed by spectrogram-factorization-based methods. Even with the

introduction of deep neural networks, most of the pipelines operated on spectro-

grams [26]. Inverse short-time Fourier was used to obtain time-domain enhanced

audio which then gave rise to signal artifact.

There have been recent changes in the design of the deep networks denoising

pipelines that are much more optimized and operate on the raw waveforms directly.
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This avoids expensive computations for time-frequency transformations. Some of

these approaches used simple loss functions [23]. Some have even experimented

with some advanced loss functions but with very little success [12].

In our case, we are using a different loss function that we call ”Perceptual Fea-

ture Loss”. This is inspired by the research in the computer vision field, especially

in the Style Transfer Algorithms [9, 4], where activations in the pre-trained

classification network were found to produce very effective loss functions for the

synthesis of images. Basically, if we have to find the loss between two images,

then these images are passed through a pre-trained network. Each of the images

produces a set of internal activations in the network and the loss is computed on

the basis of dissimilarities between the set of activations. Such training losses have

been shown to be pretty successful in other tasks as well without the need for some

expert knowledge and without adding further complexity to the network.

Now, in the next section, we will be looking at the architecture design and

also we will try to reason about the choice of architecture, but that is somewhat

subjective. Note also that we will also call the Denoising network as Context Ag-

gregation Network sometimes and the other network (for computing perceptual

feature losses) as Feature Loss Network.
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Chapter 3

Network Architecture

There are two different architectures for two different but related tasks - 1) Denois-

ing the audio and 2) Learning the audio features. The first one takes raw input

signals as an input (which are supposed to be noisy) and gives a clean and denoised

signal as an output. Since this network operates end-to-end on audio signals, it

makes sense to use a fully convolutional network. We will be calling this the De-

noising Network.

To train the denoising network, we can simply use L2 loss between the output

of the Denoising Network and the original clean audio. However, it has been shown

that deep neural networks can learn transferrable features [18]. VGG [24] based

features have been extensively used in different vision tasks - Style transfer [15, 11,

9], Object Detection and Segmentation [6, 22, 8, 16]. Taking inspiration from that,

we have leveraged VGG-style architecture to design our feature learning network,

which we will be referring to as the Feature Loss Network.

3.1 Denoising Network

Let’s introduce some notations to get started. Assume there is a noisy audio signal

x. The corresponding clean audio is y. There is an additional background signal

n such that x = y + n. Our Denoising network is a fully convolutional network

architecture based on context aggregation networks [28]. The reason for using

context aggregation networks is that such networks have been used and proven to

be efficient in these tasks already. WaveNet [25] is also a context aggregation

network, previously used in speech synthesis. Though our denoising architecture is

much simpler than WaveNet, we do not use skip connections and gated activations

used in Wavenets. Another important feature of our network is the use of Adaptive
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Normalization [21]. We describe a context aggregation architecture and adaptive

normalization below.

3.1.1 Context Aggregation

The network consists of a total of 16 convolutional layers. The input to the first di-

mension and the output from the last dimension are the same which is N × 1. Here

the number of samples in the input signal N varies. We can see the architecture in

the Figure 3.1.

Figure 3.1: The context aggregation network consists of 15 dilated convolutional

layers. The dilation factor increases exponentially from 20 to 213. There is no

dilation for the 14th and the last layer.

Each of the intermediate layers is a 2D tensor of dimensionality N ×W where

W is the number of channels. We took constant W = 64 for all the layers. The con-

volutional kernels are of dimension 3× 1. The following 3 operations are performed

on activations from previous layers to get the activations of the current layer :

1. Dilated Convolution: First of all Dilated convolution with convolutional

kernels is performed. The dilation operator basically aggregates long-range

contextual information without changing the sampling frequency. We are

increasing the dilation factor from 20 for the first intermediate layer to 212

for the 13th layer. For the 14th layer and the last one, no dilation is being

performed.

2. Adaptive Normalization: It is just a small variant of the standard batch

normalization and is explained later.
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3. Leaky ReLU: Finally to the normalized features, we perform point-wise

leaky rectified linear unit max(0.2x, x).

These are the operations up to 13 layers. For the 14th and 15th layers, the

dilation part is removed. For the output layer (final layer), we are using 1 × 1

convolution with bias and no normalization and non-linearity. We describe adaptive

normalization below.

3.1.2 Adaptive Normalization

Batch normalization generally improves performance and hastens the training pro-

cess but degrades performance on some image processing operators. We thus employ

an adaptive version of the batch norm that was first proposed in a fast image pro-

cessing paper [21]. It is a combination of batch norm and identity mapping and is

given as:

Ψs(x) = λs(x) + µsBN(x) (3.1)

where µs, λs are scalar weights and BN is standard batch normalization. The

weights µs, λs are learned by back-propagation alongside other parameters of the

network. These weights allow the model to adapt to the characteristics of the ap-

proximated operator, adjusting between the strength of the identity branch and

batch normalization.

Now, if we look at our context aggregation network, the receptive field of the

pipeline is 214 + 1 samples, which is about 1 sec of audio having frequency fs = 16

kHz. Thus, overall we expect our network to capture the context on the time scales

of spoken words. We move on to our next architecture which is the Feature Loss

Network.

3.2 Feature Loss Network

The impressive performance of VGG [24] type networks (e.g.VGG-16, VGG-19)

is well-known in computer vision tasks like object detection (e.g. Datasets like

ImageNet). The design of our Feature Loss network is very much inspired by the

VGG-16 architecture. The two important aspects of the network are design and

the loss function. We describe them below.
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3.2.1 Network Design

Since VGG is a very efficient (in terms of performance) architecture and there are

no such standard classification networks in audio processing, the idea of a feature

loss network and its design is somewhat similar to VGG. Here, we have a total of 15

convolutional layers. The convolutional kernels are of the same dimensions as in the

Denoising network 3× 1. Here we aren’t doing any adaptive batch norm, a simple

standard batch norm is sufficient. After this, we pass it through Leaky ReLU units

to get the final activations from a layer. We are using a stride of 2×1, so after each

layer we have a decimation by a factor of 2, resulting in halving the length of the

subsequent layer as compared to the previous one. In the first intermediate layer,

the number of channels equals 2, and after every 5 layers, the number of channels

is doubled. In the last feature layer, we do the average pooling to get the output

vector. The receptive field of the network is 215 - 1 samples. The architecture is

shown in Figure 3.2.

Figure 3.2: The loss network is VGG-inspired architecture. It consists of 15 convo-

lutional layers, with batch normalization. From the output of the last layer, each

channel is average-pooled to get the feature vector which is then used for training

purposes of 2 different classification tasks

3.2.2 Denoising Loss Function

Suppose we denote the function computed by the m-th feature layer to be Φm. Let

the input noisy audio be x and the generator learns the function g(x; θ) where θ

represents the parameters of the generator. The actual clean audio is y. The feature

loss between the clean audio signal and the enhanced audio signal by the network
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is defined as the weighted L1 loss between the feature activations induced by these

signals in different layers of the network. It is computed as:

Ly,x(θ) =
M∑

m=1

λm‖Φm(y)− Φm(g(x; θ))‖1 (3.2)

where the weights λm corresponding to the m-th layer are set to balance the

contribution from each layer. We are setting these weights to the inverse of the

relative values of ‖Φm(y)−Φm(g(x; θ))‖1 after 10 training epochs. We started with

weights = 1 for all layers for the first 10 epochs.

We have mentioned already our special loss function. We also experimented with

simple loss functions - L1 loss and L2 loss. The output quality was very degraded

even at low signal-to-noise ratios (SNRs). It seems like the network doesn’t properly

process low-energy speech information. So basically, by the nature of this layered

network, activations at different layers (or depths) in the network correspond to

different time scales in the signal. So we are actually comparing many features at

different audio scales and penalizing them.

This kind of approach of using features from different layers and computing

losses by using distances between these features (from the noisy and the clean audio)

has been used in different contexts. Image stylization [9, 11] heavily relies on the

pre-trained VGG (on ImageNet) and uses these feature losses for the stylization.

VGG-based feature perceptual losses are good at preserving the content of the

input image/audio. The perceptual losses also encourage perceptual consistency

between the generated and target output. It makes sure that the generated output

not only matches the target output but also captures similar high-level features and

structures. Moreover, these losses can help reduce artifacts that might be introduced

by the generator network (Denoising network in this case). This is because the loss

is based on high-level features, which tend to be smoother and more coherent than

pixel-level losses (or audio data losses).
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Chapter 4

Network Training

We have two networks to train - the Denoising Network and the Feature Loss

Network. We describe the details of the training phase of both the networks along

with the dataset being used.

4.1 Feature Loss Network Training

Our feature loss network is not just specific to this speech-denoising task, it is more

of a general-purpose feature loss network. That’s why we train it on two different

audio classification tasks. The reason for choosing these two tasks is because these

are very standard and have been used for competitions as well (the same way

VGG was used for ImageNet). Thus we can say that our Feature Loss Network is

actually doing Multi-Task Learning. These two tasks are - 1) Acoustic Scene

Classification and 2) Domestic Audio Tagging. We discuss both of these tasks and

their datasets.

4.1.1 Acoustic Scene Classification Task

The aim of this task is to classify an audio signal into one of the predefined classes

that characterize the environment in which it was recorded. There are 15 acoustic

scenes for this task such as “park”, “home”, “train”, “office”, etc.

(I) Acoustic Scene Classification Dataset [1]

The training set consists of audio files sampled at 44.1 kHz. The duration of all

the audio files is 30 seconds. We resampled the data at 16 kHz. All the files were

stereo, so we converted each of them to 2-mono files. This way, we get a total of
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2,340 audio files. Talking about the distribution of each class - each acoustic scene

has 78 segments, which in total is 39 minutes of audio for each task.

(II) Loss function

Since this is a simple classification task, we use the standard cross-entropy loss

to train the network. So if the output from the last layer of the network is say

ŷ, we will first perform a softmax operation on it. The softmax will give the

probabilities for each of the 15 classes. Then, we will calculate cross-entropy loss

which is backpropagated for training :

Loss = −
15∑
i=1

yi log(softmax(ŷi)), (4.1)

where all the yi’s are 0 except one that represents the actual class and that

element is a 1.

4.1.2 Domestic Audio Tagging Task

This task is based on audio recordings made in a domestic environment. The aim of

the task is to perform multi-label classification (assign zero or more labels to each

sample). There are 7 classes here like “child speech”, “adult male speech”, “video

game/TV”, etc.

(I) Domestic Audio Tagging Dataset

The dataset is taken from CHiME-Home-refine [19]. The audio files are already

sampled at 16 kHz, so a separate resampling step is avoided. The duration of the

audio files is 4 seconds. The training set consists of a total of 1,946 files. The

distribution of each class is shown in 4.1.

(II) Loss function

This is a multi-label classification task. We also use the same cross-entropy loss

function described in equation 4.1. Whatever the output we get from the last layer,

we perform a sigmoid operation on it. The reason is - Sigmoid, unlike softmax
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Label Description No of occurrences

c Child Speech 1214

m Adult Male Speech 174

f Adult Female Speech 409

v Video game / TV 1181

p Percussive sounds 765

b Broadband noises 19

o Other identifiable sounds 361

Table 4.1: Data distribution of Domestic Audio Tagging training set

doesn’t give probability distribution around the no of classes as output, but in-

dependent probabilities. The softmax will give the probabilities for each of the 7

classes. Then, we will calculate the cross-entropy loss :

Loss = −
7∑

i=1

yi log(sigmoid(ŷi)), (4.2)

where all the yi’s are 0 except those that represent the actual classes and those are

all 1.

Now, we illustrate the training of our Feature Loss network.

(a) Training Process

We have two different tasks to train our network. Please note, that network ini-

tialization is already taken care of by the PyTorch libraries. We are using Adam

Optimizer [13] with a learning rate of 10−4. The model is trained for a total of

2500 epochs. In each epoch, we loop over the training data from each task and also

alternate between samples corresponding to different tasks, which means that we

are not first training our network on the first task completely, and then the second

task. Instead, in each epoch we iterate over the data for each task and alternate

between training samples of each task.

The dataset for the first task is greater than that of the second task, so some of

the files in the second dataset are presented a second time to maintain a strict al-

teration between both tasks. This training procedure is given in the original paper

that we implemented [5]. We could have done a weighted resampling consider-
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(a) Training Accuracy vs Epochs (Task 1) (b) Mean cross Entropy Loss vs Epochs (Task 1)

Figure 4.1: Variation of (a) Training Accuracy and (b) Mean Cross Entropy Loss

ing multiple times those samples corresponding to the class with lower cardinality.

Thus, in our single epoch, we go through 4680 training samples.

(b) Training Results

The training accuracy that we got for task 1 is 92.8 %. We also took the mean of

the cross entropy loss for each epoch and plotted it as well. It varied from 2.708

to 1.889. Both the graphs are shown in Figure 4.1. We observe fluctuations in the

plots because of using batch size = 1.

For the second task, we didn’t use the training accuracy measure due to the

uneven distribution of the classes instead we used Equal Error Rate. It can be

defined as a point where false acceptance rates and false rejection rates are equal.

It is a variant of the extension of training accuracy for multi-label tasks.

4.2 Denoising Network Training

The denoising network is trained on a standard dataset used in denoising tasks.

The training is pretty simple here as compared to the Feature Loss network. We

now describe the dataset and loss function.
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4.2.1 Dataset

We are using the dataset that is publicly available for speech enhancement methods

- Voice Bank Corpus [3]. This is the largest available dataset that provides

pre-mixed data. It means the noises have already been added to the data. The

procedure for this mixing is also there. This dataset is also used in WaveNet [25]

testing and SEGAN [20] testing. So we can compare our results as well. The

training set consists of data generated by the speech of 28 speakers (14 males + 14

females). Background noise consists of 10 unique background noises. Each of these

noise types is used to generate 4 files with 0, 5, 10, and 15 SNRs. These files are

sampled at 48 kHz. We then resample the files to 16 kHz. There are a total of

11,572 files. There are around 400 sentences available from each speaker.

Background Noises

As we already mentioned there are a total of 10 background noises. Out of these

two are artificially generated and eight are real noise recordings from a standard

database - Demand Database [10]. The two artificially generated noises are as

below:

1. Speech-shaped noise: It was created by filtering white noise with a filter

whose frequency response matched that of the long-term speech level of a

male speaker.

2. Babble Noise: It was generated by adding speech from six speakers from

the Voice Bank corpus that were not used either for training or testing.

The other 8 noises were: domestic noise (inside a kitchen), office noise (in a

meeting room), three public space noises (cafeteria, restaurant, subway station), two

transportation noises (car and metro), and street noise (busy traffic intersection).

4.2.2 Loss Function

We already have described the loss function in Section 3.2.2. Whatever the output

that we get from our Denoising network, we pass this enhanced audio and the

corresponding clean audio through the Feature Loss network. There we take the L1

loss between the feature activations induced by these signals from the first 6 (the

actual paper that we are implementing mentions the use of the 6 layers and the

reason is described in the Observations Section) layers of the network.
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Ly,x(θ) =
6∑

m=1

λm‖Φm(y)− Φm(g(x; θ))‖1 (4.3)

where the weights λm corresponding to the m-th layer are set to balance the

contribution from each layer. We are setting these weights to the inverse of the

relative values of ‖Φm(y)−Φm(g(x; θ))‖1 after 10 training epochs. We started with

weights = 1 for all layers for the first 10 epochs. This loss is backpropagated to

train the Denoising network.

(a) Training Process

The network weights are initialized using Xavier Initialization [7]. No biases

have been used. The adaptive normalization parameters are initialized with λ = 1

and µ = 0. The loss is computed using the first 6 layers. We are using the Adam

Optimizer [13] with learning rate = 10−4. The network is trained for a total of

320 epochs. In each epoch, the entire training set is presented in randomized order.

(b) Training Results

We saved the mean of deep feature loss for every epoch. The plot of deep feature

loss vs number of epochs is plotted and shown in Figure 4.2. The deep feature loss

is continuously decreasing (as we have expected).

Figure 4.2: Variation of mean deep feature loss vs No of Epochs

To get more insights about the loss, we also analyzed the contribution from all
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the layers to the loss. So we also plotted the feature losses between enhanced audio

and the true audio for all these 6 layers. The plots for layers 1 and 6 can be seen

in Figure 4.3.

(a) Mean of feature Loss vs Epochs (Layer 1) (b) Mean of feature Loss vs Epochs (Layer 6)

Figure 4.3: Variation of Feature Loss for (a) Layers 1, and (b) Layers 6

We observe that the way in which the feature loss is decreasing is almost the

same for layers 1 and 6. One difference to mention is that at any epoch, the feature

loss is less for layer 1 as compared to layer 6.
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Chapter 5

Experimental Setup and Test

Results

For all the training, coding, and testing parts, we have used some environment,

language, GPU, etc. It’s important to discuss these things as well to get an idea

about the overall performance of the model. We describe the experimental setup

first, then we will discuss the results.

5.1 Experimental Setup

All the experiments (including training/testing) are done on a machine with the

following specifications:

1. Operating System - Ubuntu 18.04.1 LTS

2. CPU - Intel(R) Xeon(R) CPU E5-2620 v4 2.10 GHz with 32 cores

3. RAM - 96 GB

4. GPU - Nvidia GeForce(R) GTX 1080 Ti(2 * 12 GB)

5. Programming Language - Python

6. Machine Learning Library - Pytorch

The model has been trained on a single GPU. The training of the Feature Loss

network took approx. 72 hours for 2,500 epochs, and the Denoising network took

around 68 hours to train for 320 epochs. The preprocessing part just includes

resampling of the data (of both the Denoising and the Feature Loss networks) to

16 kHz. This was done using SoX command.
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5.2 Testing Results

Now, we have done training both our networks. We will discuss the performance

shortly. Let’s first talk about the datasets used for testing (both for the Denoising

and the Feature Loss network).

5.2.1 Feature Loss Network

We know that the Feature Loss network has been trained on two tasks. So we have

these two tasks to test the network as well.

(I) Acoustic Scene Classification Test Dataset

Each acoustic scene has 26 segments totalling 13 minutes of audio for each of the

15 labels. There are a total of 390 audio files each having a 30-second duration.

The files are sampled at 44.1 kHz, so we resampled it to 16 kHz.

(II) Domestic Audio Tagging Test Dataset

The audio is of duration 4 seconds. Total number of audio files are 816. The total

number of labels is 7 (as already told in the training set). All the audio files are

already sampled at 16 kHz.

(III) Plots and Results

The Feature Loss network has been trained for 2500 epochs. Every 25 epochs of

the network’s training phase, we tested for this test dataset. Thus, we have a total

of 100 epochs where we have observations for test accuracy measured on the test

dataset.

For the first task, we plot a graph of accuracy vs epochs to see how testing

accuracy is increasing with epochs. We also plot the mean of cross entropy loss vs

these 100 epochs. Both the graphs are shown in Figure 5.1. The validation accu-

racy reaches 75.2 %. The mean cross entropy loss varies between 2.6614 and 2.0201.

For the second task, the same as in the training, here also, we didn’t use the

training accuracy measure. We again used the Equal Error Rate here. Also to view

the variation of loss, we also saved the mean cross entropy loss (same as for Task
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(a) Testing Accuracy vs Epochs (Task 1) (b) Mean cross Entropy Loss vs Epochs (Task 1)

Figure 5.1: Variation of (a) Testing Accuracy and (b) Mean Cross Entropy Loss

1). The equal error rate varies between 0.581 to 0.226. The plot for the same is

shown in Figure 5.2.

Figure 5.2: Variation of Equal Error Rate vs No of Epochs

5.2.2 Denoising Network

All the testing has been done in mismatched conditions. We first describe the

dataset first, and then we will discuss the results.
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(a) Dataset

The data source is the same as for training - Voice Bank Corpus. Here, the speech

is obtained from 2 speakers (1 male + 1 female). The background data is obtained

from 5 different background types. Then each of the background data is used to

generate 4 files with 2.5, 7.5, 12.5, and 17.5 SNRs. The complete test set comprises

824 such files. All the data is sampled at 48 kHz, so we resampled the data at 16 kHz.

The chosen noises were domestic noise (living room), office noise (office space),

one transport (bus), and two street noises (open area cafeteria and a public square).

(b) Plots

Just like the training, here also we saved and plotted the deep feature loss for the

test set. We were running the training dataset for 320 epochs. We tested the test

dataset after every 10 epochs, so we basically have 32 epochs of testing. We can

see the variation of deep loss vs the number of epochs in Figure 5.3.

Figure 5.3: Variation of mean deep feature loss vs No of Epochs

Similar to the training part, here also we plotted the variation of feature loss for

layers 1 and 6. The plot can be seen in Figure 5.4.

(c) Evaluation Metric and Results

Objective metrics, which are quantitative measures used to assess audio quality, are

recognized for their limited ability to fully align with human audio quality ratings.
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(a) Mean of feature Loss vs Epochs (Layer 1) (b) Mean of feature Loss vs Epochs (Layer 6)

Figure 5.4: Variation of Feature Loss for (a) Layer 1, and (b) Layer 6

To address this, we complement our evaluation process with meticulously crafted

perceptual experiments involving human listeners. These experiments are designed

to capture the subjective aspect of audio quality. The methodology for gathering

human listener feedback is rooted in A/B testing, where two different versions of

audio content (A and B) are presented to participants, and their preferences are

recorded. These A/B tests are conducted substantially using the Amazon Mechani-

cal Turk platform. This platform enables us to crowdsource human input efficiently.

To streamline the execution and analysis of these perceptual experiments, we orga-

nize the A/B tests into sets known as Human Intelligence Tasks (HITs). This

structured approach ensures a systematic and organized evaluation of audio quality

as perceived by human listeners.

Each Human Intelligence Task (HIT) in our experiment comprises 100 pairwise

comparisons vs. baseline. In each comparison, a worker is presented with two audio

clips, and they have the flexibility to play these clips in any order and as many times

as needed. One of the audio clips is generated by our approach, while the other

is produced by one of the baseline methods, both from the same input within the

test dataset. The presentation of these audio files is entirely randomized, both

within each pair and among pairs. This means that the worker has no information

about which clip comes from our approach and which is from the baseline. The

worker’s task is to identify, within each pair, the audio clip that contains cleaner

speech quality. Following the approach of [5], we also added 0 ”sentry” comparisons.

These sentry pairs are designed to have a clear and obvious correct answer. They
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are mixed into the HIT in a random order. The purpose of these sentry comparisons

is to prevent careless or inattentive workers from affecting the results. If a worker

provides incorrect responses for two or more of these sentry pairs, the entire HIT is

disregarded.

In summary, each HIT comprises a total of 110 pairwise comparisons, consisting

of 100 experimental comparisons and 10 sentry comparisons, to assess the cleanliness

of speech in audio clips generated by our approach compared to baseline methods.

The results are shown in table 5.1. For the Very Easy test set, SEGAN [20] and

Weiner [2] perform on similar levels as ours. The superiority of our approach can be

seen in the Hard test set. This illustrates the robustness of our algorithm within a

specific context, one in which background signal degradation is considerably more

pronounced. In such scenarios, the need for denoising is particularly evident. In

contrast, for less challenging cases with lower levels of input degradation, both

our method and the baseline methods tend to yield satisfactory results. In these

cases, listeners may encounter greater difficulty in discerning differences between

the various processed audio files.

Comparisons Hard Medium Easy Very Easy

Vs Wiener 94.5 % 85.1 % 78.3% 88.1%

Vs SEGAN 80.8 % 65.7 % 60.5% 59.6%

Vs Wiener 80.2 % 64.8 % 58.3% 54.7%

Table 5.1: Each cell in the table represents the proportion of blind randomized

pairwise comparisons in which the listener judged our approach’s output as cleaner

than the output of a baseline.
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Chapter 6

Summary

So far, we have looked at the training and testing part. Based on the results and

graphs, we note down some observations and indicate what’s remaining to be done.

6.1 Observations

First of all, let us consider the Feature Loss network. Since the network is trained

on 2 different tasks, we can see that the test accuracy didn’t reach beyond 80 %.

Because somehow, the network weights have to change in a way it can learn about

both the tasks and not just single task. So the training isn’t independent. That’s

why the accuracy for task 1 also depends on how the network is trained for task 2.

We can also see fluctuations in the graph in Figure 5.1. The reason is due to the

use of batch size = 1. The same fluctuations happen with cross-entropy losses.

Now, considering the Denoising network results, we can see that the fluctuations

in the losses are maximum for layer 6 followed by 5, then 4, and so on. We know

that the actual deep feature loss function is a weighted sum of all these layers’ losses.

So in some way, the high fluctuations in the later layers help the initial layers to

learn more. If there weren’t many fluctuations in the later layers’ losses, then the

learning would have been very slow for the initial layers as the losses from later

layers get backpropagated to train initial layer parameters. Also, the lowest losses

have been recorded for layer 1, which also supports our theory that initial layers

are getting faster trained than the later ones.
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6.2 Issues and Future Work

6.2.1 Issues

One of the major issues was to decide how to train the Feature Loss network. The

reason is because of multi-task learning. Should the optimizers be the same for both

or two different optimizers should be used? Another concern is if the optimizers

used for different tasks should be the same or not. We used a single optimizer for

both tasks. Also, we have used the cross-entropy loss function for both tasks. We

are not sure how the Feature Loss model would have converged if we had used two

different loss functions. The reason is that if the loss function is the same, then the

rate at which weights will change would have differed, and both the losses could

have tried to take the weights to some other minimal.

There wasn’t any major issue with the Denoising network. A small issue was

with the input audio length, as it was a variable that forced us to use batch size

= 1. We could have tried clipping all the audio to have some fixed duration but

that could have resulted in the loss of information. Also, the training part for the

Denoising network was consuming too much of GPU (around 6.5 GB).

6.2.2 Future Work

For future work, the most important thing to develop is the performance metric

for our Denoising model. Human perception is a very subjective measure. Also,

instead of just the first 6 layers, we can use something like Neural Style Transfer

[9] loss, which uses losses from some layers at the start and some layers in between

- layer 1, layer 3, layer 5, etc. Large fluctuations in the later layers can lead to fast

learning for the initial layers.

As already mentioned, the GPU consumption for the Denoising network should

be minimized and the code should try to use more than one cores wherever possible.

Right now, it just uses a single core mostly in spite of the availability of many cores.
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